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ABSTRACT 
 
 In this study, a technique has been proposed for 
developing constitutive models for polymer composite 
systems reinforced with single-walled carbon nanotubes 
(SWNT) with various orientations with respect to the bulk-
material coordinates.  A nanotube, the local polymer 
adjacent to the nanotube, and the nanotube/polymer 
interface have been modeled as an equivalent-continuum 
fiber by using an equivalent-continuum modeling method.  
The equivalent-continuum fiber accounts for the local 
molecular structure and bonding information and serves as a 
means for incorporating micromechanical analyses for the 
prediction of bulk mechanical properties of SWNT/polymer 
composite.  As an example, the proposed approach is used 
for the constitutive modeling of a SWNT/LaRC-SI (with a 
PmPV interface) composite system, with aligned nanotubes, 
three-dimensionally randomly oriented nanotubes, and 
nanotubes oriented with varying degrees of axisymmetry.  It 
is shown that the Young’s modulus is highly dependent on 
the SWNT orientation distribution. 
 
INTRODUCTION 
 
 In the last few years, nano-structured, non-metallic 
materials have generated considerable interest in the 
materials community partly because of their potential for 
large gains in mechanical and physical properties with 
respect to traditional structural materials. In particular, 
SWNT-reinforced polymer composites may provide 
significant increases in strength and stiffness when 
compared to typical carbon-fiber-reinforced polymeric 
composites.  In order to facilitate the development of 
nanotube-reinforced polymer composites, constitutive 
relationships must be developed to predict the bulk 
mechanical properties of the composite as a function of 
molecular structure of the polymer, the nanotube, and the 
polymer/nanotube interface.   
 
In this paper, a technique for developing constitutive models 
for a nanotube/polymer composite with various nanotube 
orientations is developed that takes into account the discrete 
nature of the atomic interactions at the nanometer length 
scale and the interfacial characteristics of the nanotube and 
surrounding polymer matrix by using the equivalent-
continuum modeling technique developed by Odegard et al. 

[1].  The equivalent-continuum model of a nanotube/polymer 
composite representative volume element (RVE) developed 
by Odegard et al. [2] is used in micromechanical analyses to 
determine the bulk constitutive properties of the 
SWNT/polymer composite with aligned nanotubes, three-
dimensionally randomly oriented nanotubes, and nanotubes 
oriented with varying degrees of axisymmetry.  A brief 
summary of the equivalent-continuum modeling method is 
followed by a detailed description of the micromechanics 
analysis and presentation of results. 
 
EQUIVALENT-CONTINUUM MODELING 
 
 Recently, Odegard et al. [2] developed an equivalent-
continuum model of the RVE (referred to as an effective fiber 
for the remainder of this paper) for a nanotube/polymer 
composite.  The polymer matrix was composed of the 
thermoplastic polyimide LaRC-SI, which has a Young’s 
modulus and Poison’s ratio of 3.8 GPa and 0.4, respectively.  
At the nanotube/polymer interface is a layer of PmPV 
[poly(m-phenylenevinylene) substituted with octyloxy chains] 
that allows for improved nanotube/polymer molecule 
interaction through non-covalent bonded interactions. This 
improved interaction corresponds to improved load transfer 
at the nanotube/polymer interface, relative to that associated 
with traditional structural polymers [3]. 

The mechanical properties of the effective fiber, 
which consists of the nanotube, the nanotube/PmPV 
interface, and a layer of PmPV molecules, were determined 
by using three steps.  First, a model of the molecular 
structure of the nanotube and adjacent polymer chains was 
established by using molecular dynamics (MD) simulations.  
It was assumed that the basic interactions of the atoms 
consisted of the bond stretching, bond-angle variation, and 
non-bonded interactions described in Fig. 1.  Second, an 
equivalent-truss model was developed in which the 
mechanical properties of the truss elements were 
determined based on the force constants that represent the 
bonded and non-bonded interactions of the atoms in the 
molecular model.  Finally, an effective-fiber model was 
developed that represented the equivalent-truss model.  The 
properties of the transversely-isotropic, homogeneous, 
effective fiber were determined by equating the strain 
energies of the truss and the effective-fiber models for five 
sets of loading conditions. 
 



 

 2

MICROMECHANICS ANALYSIS 
 
 Constitutive models of the effective fiber/polymer 
composite may be developed with a micromechanical 
analysis by using the mechanical properties of the effective 
fiber and the bulk polymer matrix material.  For the 
composite considered in this study, the PmPV molecules 
near the polymer/nanotube interface were included in the 
effective fiber, and it was assumed that the matrix polymer 
surrounding the effective fiber had mechanical properties 
equal to those of the bulk LaRC-SI resin.  Because the bulk 
LaRC-SI polymer molecules and the polymer molecules 
included in the effective fiber are physically entangled, 
perfect bonding between the effective fiber and the 
surrounding polymer matrix was assumed. 
 The micromechanics-based Mori-Tanaka method [4] 
was used to predict the elastic mechanical properties of the 
composite material.  This method has been applied to 
transversely-isotropic inclusions by Qui and Weng [5].  For 
this method, the complete elastic stiffness tensor for the 
composite is given by Benveniste [6] 
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where cf and cm are the fiber and matrix volume fractions, 
respectively, I is the identity tensor, Cm is the stiffness tensor 
of the matrix material, Cf is the stiffness tensor of the fiber, 
and Af is the dilute mechanical strain concentration tensor 
for the fiber 
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The tensor S is Eshelby’s tensor as given by Eshelby [7] and 
Mura [8].  The terms enclosed with angle-brackets in Eq. (1) 
represent the average value of the term over all orientations 
defined by transformation from the local fiber coordinates (x1, 
x2, x3) to the global coordinates (x1’’’, x2’’’, x3’’’) (Figure 2).  
For example, the transformed dilute mechanical strain 
concentration tensor for the fiber with respect to the global 
coordinates is 
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where aij are the direction cosines for the transformation 
indicated in Fig. 2; that is, 
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In general, the orientation average of the dilute mechanical 
strain concentration tensor is [9] 
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where ( ),ρ φ ψ  is the orientation distribution function 
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and where s1 and s2 are factors that control the orientation.  
Three cases considered in this paper are: 
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where ( )x xδ −  is Dirac’s delta distribution, centered at x .  
Case 1 is a completely three dimensionally randomly 
oriented composite.  Case 2 corresponds to fibers 
completely aligned along the x1

’’’ axis.  Case 3 is an 
axisymmetric distribution of fibers about the x1

’’’ axis.  The 
constant k describes the relative amount of alignment of the 
fibers with respect to the x1

’’’ axis.  For large values of k (k → 
∞), the axisymmetric distribution approaches the aligned 
case, and for small values of k (k → 0), the fibers are 
axisymmetrically distributed over all values of the angle � 
with respect to the x1

’’’ axis. 

 For the effective fiber/polymer composite considered 
in this study, the elastic stiffness components, volume 
fraction, length, and orientation of the effective fiber were 
used for the fiber properties in Eqs. (1) and (2).  The 
effective fibers were assumed to have an ellipsoidal 
geometry for the Eshelby tensor in Eq. (2).  It was also 
assumed that the nanotube volume is a hollow cylinder with 
a wall thickness of 0.34 nm for the conversion of effective 
fiber volume fraction to nanotube volume fraction. 
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RESULTS 
 
 The moduli of the effective fiber/polymer composite 
were determined for the three fiber orientation cases for a 
nanotube length of 200 nm, a nanotube radius of 0.41 nm, 
and a 1% nanotube volume fraction.  A plot of the 
longitudinal and transverse Young’s moduli (EL and ET, 
respectively) of the composite for case 3 is shown in Fig. 3 
as a function of k.  The Young’s modulus of the random 
composite (case 1) and the longitudinal and transverse 
Young’s moduli of the aligned composite (case 2), which are 
independent of k, are also plotted in Fig. 3.  For small values 
of k, the longitudinal and transverse modulus values of case 
3 approach the modulus of the random composite.  For large 
values of k, the longitudinal and transverse moduli of case 3 
approach the values of longitudinal and transverse moduli of 
the aligned orientation, respectively.  Therefore, this 
example demonstrates that the model yields expected 
results for the prediction of constitutive properties for the 
SWNT/polymer composite. 
 
SUMMARY AND CONCLUDING REMARKS 
 
 In this study, a method has been presented for 
linking atomistic simulations of SWNT/polymer composite 
systems to continuum models of the bulk material.  The 
utility of this method was examined by modeling a 
SWNT/LaRC-SI composite with a PmPV interface while 
considering nanotube orientation.  The Young’s moduli of the 
composite were determined for the cases of aligned 
nanotubes, three-dimensionally randomly oriented 
nanotubes, and nanotubes with an axisymmetric orientation.    
It has been shown that there are limiting values for each 
case and that by increasing and decreasing values of the 
orientation parameter, k, the moduli of the axisymmetric 
composite approach the moduli of the aligned and random 
composites, respectively. It is expected that this analysis will 
be important for the development of SWNT composites 
where the SWNT orientation distribution cannot be described 
as perfectly aligned or three-dimensionally randomly 
oriented. 
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Fig. 1. Equivalent-continuum modeling 
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Fig. 2. Effective fiber orientation 
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Fig. 3. Dependence of Young’s modulus on the alignment constant k 
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